A Swiss firm acquires Mars One private project

A Swiss firm acquires Mars One private project


Mars One consists of two entities: the Dutch not-for-profit Mars One Foundation and a British public limited company Mars One Ve
Mars One consists of two entities: the Dutch not-for-profit Mars One Foundation and a British public limited company Mars One Ventures
A British-Dutch project aiming to send an unmanned mission to Mars by 2018 announced Friday that the shareholders of a Swiss financial services company have agreed a takeover bid.
"The acquisition is now only pending approval by the board of Mars One Ventures," the company said in a joint statement with InFin Innovative Finance AG, adding approval from the Mars board would come "as soon as possible."
"The takeover provides a solid path to funding the next steps of Mars One's mission to establish a permanent human settlement on Mars," the statement added.
Mars One consists of two entities: the Dutch not-for-profit Mars One Foundation and a British public limited company Mars One Ventures.
Mars One aims to establish a permanent human settlement on the Red Planet, and is currently "in the early mission concept phase," the company says, adding securing funding is one of its major challenges.
Some 200,000 hopefuls from 140 countries initially signed up for the Mars One project, which is to be partly funded by a television reality show about the endeavour.
Those have now been whittled down to just 100, out of which 24 will be selected for one-way trips to Mars due to start in 2026 after several unmanned missions have been completed.
"Once this deal is completed, we'll be in a much stronger financial position as we begin the next phase of our mission. Very exciting times," said Mars One chief executive Bas Lansdorp.
NASA is currently working on three Mars missions with the European Space Agency and plans to send another rover to Mars in 2020.
But NASA has no plans for a manned to Mars until the 2030s.
First discovered signs of weird quantum property of empty space?

First discovered signs of weird quantum property of empty space?


First signs of weird quantum property of empty space?
This artist’s view shows how the light coming from the surface of a strongly magnetic neutron star (left) becomes linearly polarised as it travels through the vacuum of space close to the star on its way to the observer on Earth (right). …more
By studying the light emitted from an extraordinarily dense and strongly magnetized neutron star using ESO's Very Large Telescope, astronomers may have found the first observational indications of a strange quantum effect, first predicted in the 1930s. The polarization of the observed light suggests that the empty space around the neutron star is subject to a quantum effect known as vacuum birefringence.
A team led by Roberto Mignani from INAF Milan (Italy) and from the University of Zielona Gora (Poland), used ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile to observe the neutron star RX J1856.5-3754, about 400 light-years from Earth.
Despite being amongst the closest , its extreme dimness meant the astronomers could only observe the star with visible light using the FORS2 instrument on the VLT, at the limits of current telescope technology.
Neutron stars are the very dense remnant cores of massive stars—at least 10 times more massive than our Sun—that have exploded as supernovae at the ends of their lives. They also have extreme magnetic fields, billions of times stronger than that of the Sun, that permeate their outer surface and surroundings.
These fields are so strong that they even affect the properties of the empty space around the star. Normally a is thought of as completely empty, and light can travel through it without being changed. But in quantum electrodynamics (QED), the quantum theory describing the interaction between photons and charged particles such as electrons, space is full of virtual particles that appear and vanish all the time. Very can modify this space so that it affects the polarisation of light passing through it.
Mignani explains: "According to QED, a highly magnetised vacuum behaves as a prism for the propagation of light, an effect known as vacuum birefringence."
Among the many predictions of QED, however, vacuum birefringence so far lacked a direct experimental demonstration. Attempts to detect it in the laboratory have not yet succeeded in the 80 years since it was predicted in a paper by Werner Heisenberg (of uncertainty principle fame) and Hans Heinrich Euler.
First signs of weird quantum property of empty space?
This wide field image shows the sky around the very faint neutron star RX J1856.5-3754 in the southern constellation of Corona Australis. This part of the sky also contains interesting regions of dark and bright nebulosity surrounding the …more
"This effect can be detected only in the presence of enormously strong magnetic fields, such as those around neutron stars. This shows, once more, that neutron stars are invaluable laboratories in which to study the fundamental laws of nature." says Roberto Turolla (University of Padua, Italy).
After careful analysis of the VLT data, Mignani and his team detected linear polarisation—at a significant degree of around 16%—that they say is likely due to the boosting effect of vacuum birefringence occurring in the area of surrounding RX J1856.5-3754.
Vincenzo Testa (INAF, Rome, Italy) comments: "This is the faintest object for which polarisation has ever been measured. It required one of the largest and most efficient telescopes in the world, the VLT, and accurate data analysis techniques to enhance the signal from such a faint star."
"The high linear polarisation that we measured with the VLT can't be easily explained by our models unless the vacuum birefringence effects predicted by QED are included," adds Mignani.
"This VLT study is the very first observational support for predictions of these kinds of QED effects arising in extremely strong magnetic fields," remarks Silvia Zane (UCL/MSSL, UK).
Mignani is excited about further improvements to this area of study that could come about with more advanced telescopes: "Polarisation measurements with the next generation of telescopes, such as ESO's European Extremely Large Telescope, could play a crucial role in testing QED predictions of vacuum birefringence effects around many more neutron stars."
"This measurement, made for the first time now in visible light, also paves the way to similar measurements to be carried out at X-ray wavelengths," adds Kinwah Wu (UCL/MSSL, UK).
This research was presented in the paper entitled "Evidence for vacuum birefringence from the first optical polarimetry measurement of the isolated neutron star RX J1856.5−3754", by R. Mignani et al., to appear in Monthly Notices of the Royal Astronomical Society.
Combining  quantum physics and photosynthesis to make discovery that could lead to highly efficient solar cells

Combining quantum physics and photosynthesis to make discovery that could lead to highly efficient solar cells


Physics, photosynthesis and solar cells
In a light harvesting quantum photocell, particles of light (photons) can efficiently generate electrons. When two absorbing channels are used, solar power entering the system through the two absorbers (a and b) efficiently generates power …more
A University of California, Riverside assistant professor has combined photosynthesis and physics to make a key discovery that could help make solar cells more efficient. The findings were recently published in the journal Nano Letters.
Nathan Gabor is focused on experimental condensed matter physics, and uses light to probe the fundamental laws of quantum mechanics. But, he got interested in photosynthesis when a question popped into his head in 2010: Why are plants green? He soon discovered that no one really knows.
During the past six years, he sought to help change that by combining his background in physics with a deep dive into biology.
He set out to re-think by asking the question: can we make materials for solar cells that more efficiently absorb the fluctuating amount of energy from the sun. Plants have evolved to do this, but current affordable solar cells - which are at best 20 percent efficient - do not control these sudden changes in solar power, Gabor said. That results in a lot of wasted energy and helps prevent wide-scale adoption of solar cells as an energy source.
Gabor, and several other UC Riverside physicists, addressed the problem by designing a new type of quantum photocell, which helps manipulate the flow of energy in . The design incorporates a heat engine photocell that absorbs photons from the sun and converts the photon energy into electricity.
Surprisingly, the researchers found that the quantum heat engine photocell could regulate solar power conversion without requiring active feedback or adaptive control mechanisms. In conventional photovoltaic technology, which is used on rooftops and solar farms today, fluctuations in solar power must be suppressed by voltage converters and feedback controllers, which dramatically reduce the overall efficiency.
Physics, photosynthesis and solar cells
Nathan Gabor's Laboratory of Quantum Materials Optoelectronics utilizes infrared laser spectroscopy techniques to explore natural regulation in quantum photocells composed of two-dimensional semiconductors. Credit: Max Grossnickle and QMO Lab
The goal of the UC Riverside teams was to design the simplest photocell that matches the amount of solar power from the sun as close as possible to the average power demand and to suppress energy fluctuations to avoid the accumulation of excess energy.
The researchers compared the two simplest quantum mechanical photocell systems: one in which the photocell absorbed only a single color of light, and the other in which the photocell absorbed two colors. They found that by simply incorporating two photon-absorbing channels, rather than only one, the regulation of energy flow emerges naturally within the photocell.
The basic operating principle is that one channel absorbs at a wavelength for which the average input power is high, while the other absorbs at low power. The photocell switches between high and low power to convert varying levels of solar power into a steady-state output.
When Gabor's team applied these simple models to the measured solar spectrum on Earth's surface, they discovered that the absorption of green light, the most radiant portion of the spectrum per unit wavelength, provides no regulatory benefit and should therefore be avoided. They systematically optimized the photocell parameters to reduce solar energy fluctuations, and found that the absorption spectrum looks nearly identical to the absorption spectrum observed in photosynthetic green plants.
The findings led the researchers to propose that natural regulation of energy they found in the quantum heat engine photocell may play a critical role in the photosynthesis in plants, perhaps explaining the predominance of green plants on Earth.
Other researchers have recently found that several molecular structures in plants, including chlorophyll a and b molecules, could be critical in preventing the accumulation of excess in plants, which could kill them. The UC Riverside researchers found that the molecular structure of the quantum heat engine photocell they studied is very similar to the structure of photosynthetic molecules that incorporate pairs of chlorophyll.
The hypothesis set out by Gabor and his team is the first to connect quantum mechanical structure to the greenness of plants, and provides a clear set of tests for researchers aiming to verify natural regulation. Equally important, their design allows regulation without active input, a process made possible by the photocell's quantum mechanical structure.

 The paper is called "Natural Regulation of Energy Flow in a Green Quantum Photocell.

credit; Sean Nealon
scientists find that Solar cells can be made with tin instead of lead

scientists find that Solar cells can be made with tin instead of lead

,

Solar power could become cheaper and more widespread
Credit: University of Warwick
A breakthrough in solar power could make it cheaper and more commercially viable, thanks to research at the University of Warwick.
In a paper published in Nature Energy, Dr Ross Hatton, Professor Richard Walton and colleagues, explain how solar cells could be produced with tin, making them more adaptable and simpler to produce than their current counterparts.
Solar cells based on a class of semiconductors known as lead perovskites are rapidly emerging as an efficient way to convert sunlight directly into electricity. However, the reliance on lead is a serious barrier to commercialisation, due to the well-known toxicity of lead.
Dr Ross Hatton and colleagues show that perovskites using tin in place of lead are much more stable than previously thought, and so could prove to be a viable alternative to lead perovskites for solar cells.
Lead-free cells could render cheaper, safer and more commercially attractive - leading to it becoming a more prevalent source of energy in everyday life.
This could lead to a more widespread use of solar power, with potential uses in products such as laptop computers, mobile phones and cars.
The team have also shown how the device structure can be greatly simplified without compromising performance, which offers the important advantage of reduced fabrication cost.
Dr Hatton comments that there is an ever-pressing need to develop renewable sources of energy:
"It is hoped that this work will help to stimulate an intensive international research effort into lead-free perovskite solar cells, like that which has resulted in the astonishingly rapid advancement of perovskite solar cells.
"There is now an urgent need to tackle the threat of climate change resulting from humanity's over reliance on fossil fuel, and the rapid development of new solar technologies must be part of the plan."
Perovskite solar cells are lightweight and compatible with flexible substrates, so could be applied more widely than the rigid flat plate silicon that currently dominate the photovoltaics market, particularly in consumer electronics and transportation applications.
The paper, 'Enhanced Stability and Efficiency in Hole-Transport Layer Free CsSnI3 Perovskite Photovoltaics', is published in Nature Energy, and is authored by Dr Ross Hatton, Professor Richard Walton and PhD student Kenny Marshall in the Department of Chemistry, along with Dr Marc Walker in the Department of Physics.

2.5 billion-year-old fossils of bacteria that predate the formation of oxygen

2.5 billion-year-old fossils of bacteria that predate the formation of oxygen


Life before oxygen
A microscopic image of 2.5 billion-year-old sulfur-oxidizing bacterium. Credit: Andrew Czaja, UC assistant professor of geology
Somewhere between Earth's creation and where we are today, scientists have demonstrated that some early life forms existed just fine without any oxygen.
While researchers proclaim the first half of our 4.5 billion-year-old planet's life as an important time for the development and evolution of early bacteria, evidence for these life forms remains sparse including how they survived at a time when oxygen levels in the atmosphere were less than one-thousandth of one percent of what they are today.
Recent geology research from the University of Cincinnati presents new evidence for bacteria found fossilized in two separate locations in the Northern Cape Province of South Africa.
"These are the oldest reported fossil sulfur bacteria to date," says Andrew Czaja, UC assistant professor of geology. "And this discovery is helping us reveal a diversity of life and ecosystems that existed just prior to the Great Oxidation Event, a time of major atmospheric evolution."
The 2.52 billion-year-old sulfur-oxidizing bacteria are described by Czaja as exceptionally large, spherical-shaped, smooth-walled microscopic structures much larger than most modern bacteria, but similar to some modern single-celled organisms that live in deepwater sulfur-rich ocean settings today, where even now there are almost no traces of oxygen.
Life before oxygen
UC Professor Andrew Czaja indicates the layer of rock from which fossil bacteria were collected on a 2014 field excursion near the town of Kuruman in the Northern Cape Province of South Africa. Credit: Aaron Satkoski, UWM postdoc on the excursion.
In his research published in the December issue of the journal Geology of the Geological Society of America, Czaja and his colleagues Nicolas Beukes from the University of Johannesburg and Jeffrey Osterhout, a recently graduated master's student from UC's department of geology, reveal samples of bacteria that were abundant in deep water areas of the ocean in a geologic time known as the Neoarchean Eon (2.8 to 2.5 billion years ago).
"These fossils represent the oldest known organisms that lived in a very dark, deep-water environment," says Czaja. "These bacteria existed two billion years before plants and trees, which evolved about 450 million years ago. We discovered these microfossils preserved in a layer of hard silica-rich rock called chert located within the Kaapvaal craton of South Africa."
With an atmosphere of much less than one percent oxygen, scientists have presumed that there were things living in deep water in the mud that didn't need sunlight or oxygen, but Czaja says experts didn't have any direct evidence for them until now.
Czaja argues that finding rocks this old is rare, so researchers' understanding of the Neoarchean Eon are based on samples from only a handful of geographic areas, such as this region of South Africa and another in Western Australia.

According to Czaja, scientists through the years have theorized that South Africa and Western Australia were once part of an ancient supercontinent called Vaalbara, before a shifting and upending of tectonic plates split them during a major change in the Earth's surface.
Based on radiometric dating and geochemical isotope analysis, Czaja characterizes his fossils as having formed in this early Vaalbara supercontinent in an ancient deep seabed containing sulfate from continental rock. According to this dating, Czaja's fossil bacteria were also thriving just before the era when other shallow-water bacteria began creating more and more oxygen as a byproduct of photosynthesis.
"We refer to this period as the Great Oxidation Event that took place 2.4 to 2.2 billion years ago," says Czaja.
Life before oxygen
Microstructures here have physical characteristics consistent with the remains of compressed coccodial (round) bacteria microorganisms. Credit: Andrew Czaja, permission to publish by Geological Society of America
Early recycling
Czaja's fossils show the Neoarchean bacteria in plentiful numbers while living deep in the sediment. He contends that these early bacteria were busy ingesting volcanic hydrogen sulfide—the molecule known to give off a rotten egg smell—then emitting sulfate, a gas that has no smell. He says this is the same process that goes on today as modern bacteria recycle decaying organic matter into minerals and gases.
"The waste product from one [bacteria] was food for the other," adds Czaja.
"While I can't claim that these early bacteria are the same ones we have today, we surmise that they may have been doing the same thing as some of our current bacteria," says Czaja. "These early bacteria likely consumed the molecules dissolved from sulfur-rich minerals that came from land rocks that had eroded and washed out to sea, or from the volcanic remains on the ocean's floor.
There is an ongoing debate about when sulfur-oxidizing bacteria arose and how that fits into the earth's evolution of life, Czaja adds. "But these fossils tell us that sulfur-oxidizing were there 2.52 billion years ago, and they were doing something remarkable."

credit; Melanie Schefft

Translate

Ads