Google Nexus codenamed ‘Marlin’


Google is likely to launch two new Nexus smartphones manufactured by HTC later this year. The specifications of smartphones codenamed Marlin and Sailfish have already leaked. While renders of the 2016 Nexus handsets have leaked before, the actual photo of the device has started hitting the web now.
The reports indicate that HTC’s 2016 flagships will share specifications and differ only based on their display size. The HTC-made Marlin image spotted online by TechDroider confirms the Marlin codename and Android N operating system. The picture posted by TechDroider only shows the screen while the design is yet very much in secrecy.

The photo confirms the handset is Marlin running Android 7.0 Nougat or Android N with latest security patch from Google. The HTC-made Marlin is likely to feature a 5.5-inch Quad HD display with Qualcomm Snapdragon 821 chipset and 4GB RAM. The TechDroider notes the device posted comes with 128GB internal storage. So this could well be a first for Nexus lineup.
While TechDroider claims the HTC Marlin features same 12MP image sensor found on Nexus 6P, earlier rumours indicated that it will be the one found HTC 10. The front camera is said to be an 8-megapixel one. The other rumours indicate that the device will feature metal unibody design and a rear fingerprint sensor with support for Nexus imprint.
HTC Marlin is likely to feature a 3,450mAh battery and a headphone jack. Google could launch HTC-made Nexus smartphone in October which could also be the public launch of Android Nougat.

way to upsize nanostructures into light, flexible 3-D printed materials


For years, scientists and engineers have synthesized materials at the nanoscale level to take advantage of their mechanical, optical, and energy properties, but efforts to scale these materials to larger sizes have resulted in diminished performance and structural integrity.
Now, researchers led by Xiaoyu "Rayne" Zheng, an assistant professor of mechanical engineering at Virginia Tech have published a study in the journal Nature Materials that describes a new process to create lightweight, strong and super elastic 3-D printed metallic nanostructured materials with unprecedented scalability, a full seven orders of magnitude control of arbitrary 3-D architectures.
Strikingly, these multiscale metallic materials have displayed super elasticity because of their designed hierarchical 3-D architectural arrangement and nanoscale hollow tubes, resulting in more than a 400 percent increase of tensile elasticity over conventional lightweight metals and ceramic foams.
The approach, which produces multiple levels of 3-D hierarchical lattices with nanoscale features, could be useful anywhere there's a need for a combination of stiffness, strength, low-weight, high flexibility—such as in structures to be deployed in space, flexible armors, lightweight vehicles and batteries, opening the door for applications in aerospace, military and automotive industries.
Natural materials, such as trabecular bone and the toes of geckoes, have evolved with multiple levels 3-D architectures spanning from the nanoscale to the macroscale. Human-made materials have yet to achieve this delicate control of structural features.
"Creating 3-D hierarchical micro features across the entire seven orders of magnitude in structural bandwidth in products is unprecedented," said Zheng, the lead author of the study and the research team leader. "Assembling nanoscale features into billets of materials through multi-leveled 3-D architectures, you begin to see a variety of programmed mechanical properties such as minimal weight, maximum strength and super elasticity at centimeter scales."
The process Zheng and his collaborators use to create the material is an innovation in a digital light 3-D printing technique that overcomes current tradeoffs between high resolution and build volume, a major limitation in scalability of current 3-D printed microlattices and nanolattices.



Related materials that can be produced at the nanoscale such as graphene sheets can be 100 times stronger than steel, but trying to upsize these materials in three dimensions degrades their strength eight orders of magnitude - in other words, they become 100 million times less strong.
"The increased elasticity and flexibility obtained through the new process and design come without incorporating soft polymers, thereby making the metallic materials suitable as flexible sensors and electronics in harsh environments, where chemical and temperature resistance are required," Zheng added.
These multi-leveled hierarchical lattice also means more surface area is available to collect photons energies as they can enter the structure from all directions and be collected not just on the surface, like traditional photovoltaic panels, but also inside the lattice structure. One of the great opportunities this study creates is the ability to produce multi-functional inorganic materials such as metals and ceramics to explore photonic and energy harvesting properties in these new materials
Besides Zheng, team members include Virginia Tech graduate research students Huachen Cui and Da Chen from Zheng's group, and colleagues from Lawrence Livermore National Laboratory. The research was conducted under the Department of Energy Lawrence Livermore Laboratory-directed research support with additional support from Virginia Tech, the SCHEV fund from the state of Virginia, and the Defense Advanced Research Projects agency.


preventing short circuits in batteries with Plant cellulose

 
in order to prevent short circuits in batteries, porous separator membranes are often placed between a battery's electrodes. There is typically a tradeoff involved, since these separators must simultaneously prevent leakage current between electrodes while allowing ions to pass through the porous channels to generate current. Conventionally, these membranes are made of synthetic materials, such as polymers.
In a new study published in Nano Letters, researchers from the Ulsan National Institute of Science and Technology (UNIST) in South Korea have designed a cellulose nanomat, or "c-mat," separator membrane that contains a thin layer of nanoporous plant cellulose on top of a thick macroporous polymer layer.
By finely tuning the thicknesses of the two layers, the researchers were able to design a separator membrane that delicately balances the tradeoff between preventing leakage current and supporting fast ion transport.
With its tiny pores, the nanoporous cellulose layer prevents leakage current between electrodes, preventing short circuits. On the other hand, the macroporous polymer layer's porous channels are too large to prevent leakage current between electrodes, but their large size enables them to function like "ionic highways" to rapidly transport charges.
The new separator has another major advantage: At high temperatures (60 °C), batteries with the new separator membranes have an 80% capacity retention after 100 cycles, whereas batteries with typical commercial polymer separators maintain just 5% of their initial capacity after 100 cycles at the same temperature.
The researchers explain that the large capacity loss in the commercial batteries at high temperature occurs due to unwanted side reactions between lithium salts and water, which produces harmful byproducts such as manganese ions. The nanoporous cellulose-based layer of the new separator membranes has a manganese-chelating ability, so that it binds to the manganese ions and prevents them from participating in the reactions that cause capacity loss. In addition, the macroporous polymer layer captures the acidic reactants that produce the manganese ions, resulting in fewer of these ions in the first place.
"We demonstrate in this work that the chemically active cellulose-based c-mat separator can mitigate the manganese ion-induced adverse effects," coauthor Sang-Young Lee, Professor at UNIST's School of Energy and Chemical Engineering, told Phys.org. "This enables a remarkable improvement in the high-temperature cycling performance far beyond that which is attainable with conventional membrane technologies."
In the future, the researchers plan to modify the separators for potential use in next-generation rechargeable batteries such as sodium-ion, lithium-sulfur, and metal-ion batteries.
"The c-mat separator is expected to be used for next-generation high-performance batteries with high temperature stability—for example, in large-sized batteries for electric vehicles and grid-scale electricity storage systems," Lee said.
In addition to its use as a battery separator membrane, the c-mat separator also has potential applications in membranes for desalination systems, as well as for ecofriendly sensors for heavy metal ions.


Plotting electromagnetic waveforms



Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second. 

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and it is difficult to capture them in action. However, a better understanding of the dynamics of field variation in electronic components, such as transistors, is indispensable for future advances in electronics. Researchers in the Laboratory for Attosecond Physics (LAP), jointly run by Ludwig-Maximilians-Universität (LMU) and the Max Planck Institute of Quantum Optics (MPQ), have now taken an important step towards this goal – by building an electron microscope that can image high-frequency electromagnetic fields and trace their ultrafast dynamics.
The electronic devices we have become so familiar with and use every day are – without exception – powered by changing electromagnetic fields. These fields control the flow of electrons in components such as 'field-effect' transistors, and are ultimately responsible for the manipulation, flow and storage of data in our computers and smartphones. A better understanding of electromagnetic waveforms and their ultrafast reconfiguration in individual components will help to shape the future of electronics. The LMU and MPQ physicists who belong to the research group in Ultrafast Electron Imaging have now developed an electron microscope that is specifically designed for the analysis of rapidly varying electromagnetic fields.
This instrument makes use of ultrashort pulses of laser light, each of which lasts for a few femtoseconds (a femtosecond equals one millionth of a billionth (10-15) of a second). These laser pulses are used to generate bunches of electrons made up of very few particles, which are then temporally compressed by the action of terahertz (1012 Hz) near-infrared radiation. The Munich team first described this strategy earlier this year in the journal Science (Science 22. April 2016, DOI: 10.1126/science.aae0003), and demonstrated that it can generate electron pulses that are shorter than a half-cycle of the optical field.
The researchers now show that these ultrashort electron pulses can be used to map high-frequency electromagnetic fields. In the experiment, the pulses are directed onto a microantenna that has just interacted with a precisely timed burst of terahertz radiation. The light pulse excites surface electrons in the antenna, thus creating an oscillating optical (electromagnetic) field in the immediate vicinity (the so-called near field) of the target. When the electron pulses come under the influence of the induced electromagnetic field around the antenna, they are scattered, and the pattern of their deflection is recorded. On the basis of the dispersion of the deflected electrons, the researchers can reconstruct the spatial distribution, temporal variation, orientation and polarization of the light emitted by the microantenna.
"In order to visualize electromagnetic fields oscillating at optical frequencies, two important conditions must be met", explains Dr. Peter Baum, who led the team and supervised the experiments. "The duration of each electron pulse, and the time it takes to pass through through the region of interest, must both be less than a single oscillation period of the light field." The electron pulses used in the experiment propagate at speeds approximately equal to half the speed of light.
With their novel extension of the principle of the electron microscope, the Munich physicists have shown that it should be feasible to precisely detect and measure even the tiniest and most rapidly oscillating electromagnetic fields. This will allow researchers to obtain a detailed understanding of how transistors or optoelectronic switches operate at the microscopic level.
The new technology is also of interest for the development and analysis of so-called metamaterials. Metamaterials are synthetic, patterned nanostructures, whose permeability and permittivity for electrical and magnetic fields, respectively, deviate fundamentally from those of materials found in nature. This in turn gives rise to novel optical phenomena which cannot be realized in conventional materials. Metamaterials therefore open up entirely new perspectives in optics and optoelectronics, and could provide the basic building blocks for the fabrication of components for light-driven circuits and computers. The new approach to the characterization of electromagnetic waveforms based on the use of attosecond physics brings us a step closer to the electronics of the future.

emporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and it is difficult to capture them in action. However, a better understanding of the dynamics of field variation in electronic components, such as transistors, is indispensable for future advances in electronics. Researchers in the Laboratory

emporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and it is difficult to capture them in action. However, a better understanding of the dynamics of field variation in electronic components, such as transistors, is indispensable for future advances in electronics. Researchers in the Laboratory for Attosecond Physics (LAP), jointly run by Ludwig-Maximilians-Universität (LMU) and the Max Planck Institute of Quantum Optics (MPQ), have now taken an important step towards this goal – by building an electron microscope that can image high-frequency electromagnetic fields and trace their ultrafast dynamics.
emporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and it is difficult to capture them in action. However, a better understanding of the dynamics of field variation in electronic components, such as transistors, is indispensable for future advances in electronics. Researchers in the Laboratory for Attosecond Physics (LAP), jointly run by Ludwig-Maximilians-Universität (LMU) and the Max Planck Institute of Quantum Optics (MPQ), have now taken an important step towards this goal – by building an electron microscope that can image high-frequency electromagnetic fields and trace their ultrafast dynamics.

Konami built the ultimate prosthetic arm for this gamer, and it has a drone

When avid video gamer James Young lost his left arm in a grisly railway accident in London several years ago, video game developer Konami teamed up with leading robotics engineers to craft him an innovatively unique prosthetic. When we checked in on Young’s progress last November, Konami and prosthesis designer Sophie De Oliviera Barata intended to design the arm similarly to the prosthetic worn by the protagonist in Metal Gear Solid V: The Phantom Pain. After spending the past six months on the project, Young’s prosthetic is complete — and it’s even more outrageous than originally thought.

Fitted recently at Barata’s studio, Young’s prosthetic connects directly to his shoulder’s remaining nerves and muscles which control an articulated plastic hand installed to the end of the arm. As in most prosthetics, sensors attached to the skin surrounding his shoulder detect movements and send the necessary movements through the arm and hand. Standard procedure, sure, but it’s the arm’s extras which truly steal the show.
Designed and installed by a company called Open Bionics, Young’s prosthetic boasts a working flashlight, a USB port built-in to the wrist for charging a smartphone, a laser light, digital watch, and best of all: a fully functioning drone. That’s right, not only did Young regain use of his left arm with the help of Konami and a team of world-class prosthetics designers, but his new arm features an operational UAV that he can fly whenever he wants.
 “I didn’t want to look like the Terminator because my job involves talking to doctors about the drugs they use, I didn’t want to look as if I’m going to kill someone,” Young told the BBC in a recent documentary.
' Developed in conjunction with the Konami-created Phantom Limb Project, the hope is that it the United Kingdom will eventually medically approve the arm for use by other amputees across the country. Weighing ten pounds with both the harness and battery attached, Young’s arm isn’t necessarily light as far as prosthetics go but he did acknowledge that it doesn’t hinder him in any way. As of now, the arm will remain attached to Young via the harness though attaching it via titanium implants is likely the next step.

First US-approved drone delivery




Remember the post about robots taking our jobs? It is already started
With a chicken sandwich, hot coffee and donuts, aviation history was made Friday.
These were among the items in the first drone delivery on US soil approved by aviation officials, made by convenience retailer 7-Eleven and the drone startup Flirtey.
The delivery took place in Reno, Nevada, with the items loaded into a special box for hot and cold food and flown to a local family.
"We're absolutely thrilled to have 7-Eleven, the largest convenience chain in the world, embracing new technologies and working with us at Flirtey to make drone delivery a reality for customers all over the world," said Flirtey chief executive Matt Sweeny.
"This is just the first step in our collaboration with 7-Eleven. Flirtey's historic drone deliveries to date have been stepping stones to store-to-home drone delivery, and today is a giant leap toward a not-too-distant future where we are delivering you convenience on demand."
Others include US online giant Amazon are also working on drone deliver, but this was the first in what could become a broader trend.
Flirtey is also working with drones to deliver relief supplies as part of humanitarian missions around the world.
But it also hopes to expand its partnership with 7-Eleven for convenience deliveries. Friday's delivery also included store candy and its Slurpee iced drinks.
"Drone delivery is the ultimate convenience for our customers and these efforts create enormous opportunities to
redefine convenience," said Jesus Delgado-Jenkins, the retailer's chief marketing officer.
"This delivery marks the first time a retailer has worked with a drone delivery company to transport immediate consumables from store to home. In the future, we plan to make the entire assortment in our stores available for delivery to customers in minutes."
The Federal Aviation Administration this year updated rules allowing for some commercial drone operations in US airspace.
\

Storing digital information in DNA


Lets for a while pretend to not know of the extreme way of storage of information in space.

Karin Strauss says, Her computer contains her "digital attic"—a place where she stores that published math paper she wrote in high school, and computer science schoolwork from college.
She'd like to preserve the stuff "as long as I live, at least," says Strauss, 37. But computers must be replaced every few years, and each time she must copy the information over, "which is a little bit of a headache."
It would be much better, she says, if she could store it in DNA—the stuff our genes are made of.
Strauss, who works at Microsoft Research in Redmond, Washington, is working to make that sci-fi fantasy a reality.
She and other scientists are not focused in finding ways to stow high school projects or snapshots or other things an average person might accumulate, at least for now. Rather, they aim to help companies and institutions archive huge amounts of data for decades or centuries, at a time when the world is generating digital data faster than it can store it.
To understand her quest, it helps to know how companies, governments and other institutions store data now: For long-term storage it's typically disks or a specialized kind of tape, wound up in cartridges about three inches on a side and less than an inch thick. A single cartridge containing about half a mile of tape can hold the equivalent of about 46 million books of 200 pages apiece, and three times that much if the data lends itself to being compressed.
A tape cartridge can store data for about 30 years under ideal conditions, says Matt Starr, chief technology officer of Spectra Logic, which sells data-storage devices. But a more practical limit is 10 to 15 years, he says.
It's not that the data will disappear from the tape. A bigger problem is familiar to anybody who has come across an old eight-track tape or floppy disk and realized he no longer has a machine to play it. Technology moves on, and data can't be retrieved if the means to read it is no longer available, Starr says.
So for that and other reasons, long-term archiving requires repeatedly copying the data to new technologies.
Into this world comes the notion of DNA storage. DNA is by its essence an information-storing molecule; the genes we pass from generation to generation transmit the blueprints for creating the human body. That information is stored in strings of what's often called the four-letter DNA code. That really refers to sequences of four building blocks—abbreviated as A, C, T and G—found in the DNA molecule. Specific sequences give the body directions for creating particular proteins.
Digital devices, on the other hand, store information in a two-letter code that produces strings of ones and zeroes. A capital "A," for example, is 01000001.
Converting digital information to DNA involves translating between the two codes. In one lab, for example, a capital A can become ATATG. The idea is once that transformation is made, strings of DNA can be custom-made to carry the new code, and hence the information that code contains.
One selling point is durability. Scientists can recover and read DNA sequences from fossils of Neanderthals and even older life forms. So as a storage medium, "it could last thousands and thousands of years," says Luis Ceze of the University of Washington, who works with Microsoft on DNA data storage.
Advocates also stress that DNA crams information into very little space. Almost every cell of your body carries about six feet of it; that adds up to billions of miles in a single person. In terms of information storage, that compactness could mean storing all the publicly accessible data on the internet in a space the size of a shoebox, Ceze says.
In fact, all the digital information in the world might be stored in a load of whitish, powdery DNA that fits in space the size of a large van, says Nick Goldman of the European Bioinformatics Institute in Hinxton, England.
What's more, advocates say, DNA storage would avoid the problem of having to repeatedly copy stored information into new formats as the technology for reading it becomes outmoded.
"There's always going to be someone in the business of making a DNA reader because of the health care applications," Goldman says. "It's always something we're going to want to do quickly and inexpensively."
Getting the information into DNA takes some doing. Once scientists have converted the digital code into the 4-letter DNA code, they have to custom-make DNA. For some recent research Strauss and Ceze worked on, that involved creating about 10 million short strings of DNA.
Twist Bioscience of San Francisco used a machine to create the strings letter by letter, like snapping together Lego pieces to build a tower. The machine can build up to 1.6 million strings at a time.
Each string carried just a fragment of information from a digital file, plus a chemical tag to indicate what file the information came from.
To read a file, scientists use the tags to assemble the relevant strings. A standard lab machine can then reveal the sequence of DNA letters in each string.
Nobody is talking about replacing hard drives in consumer computers with DNA. For one thing, it takes too long to read the stored information. That's never going to be accomplished in seconds, says Ewan Birney, who works on DNA storage with Goldman at the bioinformatics institute.
But for valuable material like corporate records in long-term storage, "if it's worth it, you'll wait," says Goldman, who with Birney is talking to investors about setting up a company to offer DNA storage.
Sri Kosuri of the University of California Los Angeles, who has worked on DNA information storage but now largely moved on to other pursuits, says one challenge for making the technology practical is making it much cheaper.
Scientists custom-build fairly short strings DNA now for research, but scaling up enough to handle information storage in bulk would require a "mind-boggling" leap in output, Kosuri says. With current technology, that would be hugely expensive, he says.
George Church, a prominent Harvard genetics expert, agrees that cost is a big issue. But "I'm pretty optimistic it can be brought down" dramatically in a decade or less, says Church, who is in the process of starting a company to offer DNA storage methods.
For all the interest in the topic, it's worth noting that so far the amount of information that researchers have stored in DNA is relatively tiny.
Earlier this month, Microsoft announced that a team including Strauss and Ceze had stored a record 200 megabytes. The information included 100 books—one, fittingly, was "Great Expectations"— along with a brief video and many documents. But it was still less than 5 percent the capacity of an ordinary DVD.
Yet it's about nine times the mark reported just last month by Church, who says the announcement shows "how fast the field is moving."
Meanwhile, people involved with archiving digital data say their field views DNA as a possibility for the future, but not a cure-all.
"It's a very interesting and promising approach to the storage problem, but the storage problem is really only a very small part of digital preservation," says Cal Lee, a professor at the University of North Carolina's School of Information and Library Science.

It's true that society will probably always have devices to read DNA, so that gets around the problem of obsolete readers, he says. But that's not enough.
"If you just read the ones and zeroes, you don't know how to interpret it," Lee says.
For example, is that string a picture, text, a sound clip or a video? Do you still have the software to make sense of it?
What's more, the people in charge of keeping digital information want to check on it periodically to make sure it's still intact, and "I don't know how viable that is with DNA," says Euan Cochrane, digital preservation manager at the Yale University Library. It may mean fewer such check-ups, he says.
Cochrane, who describes his job as keeping information accessible "10 years to forever," says DNA looks interesting if its cost can be reduced and scientists find ways to more quickly store and recover information.
Starr says his data-storage device company hasn't taken a detailed look at DNA technology because it's too far in the future.
There are "always things out on the horizon that could store data for a very long time," he says. But the challenge of turning those ideas into a practical product "really trims the field down pretty quickly."


Translate

Ads