Applying quantum theory and Relativity to plasma physics issues



Among the intriguing issues in plasma physics are those surrounding X-ray pulsars—collapsed stars that orbit around a cosmic companion and beam light at regular intervals, like lighthouses in the sky. Physicists want to know the strength of the magnetic field and density of the plasma that surrounds these pulsars, which can be millions of times greater than the density of plasma in stars like the sun.
Researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have developed a theory of plasma waves that can infer these properties in greater detail than in standard approaches. The new research analyzes the plasma surrounding the pulsar by coupling Einstein's theory of relativity with quantum mechanics, which describes the motion of subatomic particles such as the atomic nuclei—or ions—and electrons in plasma. Supporting this work is the DOE Office of Science.
Quantum field theory
The key insight comes from quantum field theory, which describes charged particles that are relativistic, meaning that they travel at near the speed of light. "Quantum theory can describe certain details of the propagation of waves in plasma," said Yuan Shi, a graduate student in the Princeton Program in Plasma Physics and lead author of a paper published July 29 in the journal Physical Review A. Understanding the interactions behind the propagation can then reveal the composition of the plasma.
Shi developed the paper with assistance from co-authors Nat Fisch, director of the Program in Plasma Physics and professor and associate chair of astrophysical sciences at Princeton University, and Hong Qin, a physicist at PPPL and executive dean of the School of Nuclear Science and Technology at the University of Science and Technology of China. "When I worked out the mathematics they showed me how to apply it," said Shi.
In pulsars, relativistic particles in the magnetosphere, the magnetized atmosphere that surrounds the body, absorb light waves, and this absorption displays peaks against a blackbody background. "The question is, what do these peaks mean?" asks Shi. Analysis of the peaks with equations from special relativity and quantum field theory, he found, can determine the density and field strength of the magnetosphere.
Combining physics techniques
The process combines the techniques of high-energy physics, condensed matter physics, and plasma physics. In high-energy physics, researchers use quantum field theory to describe the interaction of a handful of particles. In condensed matter physics, people use quantum mechanics to describe the states of a large collection of particles. Plasma physics uses model equations to explain the collective movement of millions of particles. The new method utilizes aspects of all three techniques to analyze the plasma waves in pulsars.
The same technique can be used to infer the density of the plasma and strength of the magnetic field created by inertial confinement fusion experiments. Such experiments use lasers to ablate—or vaporize —a target that contains plasma fuel. The ablation then causes an implosion that compresses the fuel into plasma and produces fusion reactions.
Standard formulas give inconsistent answers
Researchers want to know the precise density, temperature and field strength of the plasma that this process creates. Standard mathematical formulas give inconsistent answers when lasers of different color are used to measure the plasma parameters. This is because the extreme density of the plasma gives rise to quantum effects, while the high energy density of the magnetic field gives rise to relativistic effects, says Shi. So formulations that draw upon both fields are needed to reconcile the results.
For Shi, the new technique shows the benefits of combining physics disciplines that don't often interact. Says he: "Putting fields together gives tremendous power to explain things that we couldn't understand before."
 what do you think? comment bellow

The relationship between magnetic fields and star formation





 The star forming molecular clump W43-MM1 is very massive and dense, containing about 2100 solar masses of material in a region only one-third of a light year across (for comparison, the nearest star to the Sun is a bit over four light years away).
Previous observations of this clump found evidence for infalling motions (signaling that material is still accumulating onto a new star) and weak magnetic fields. These fields are detected by looking for polarized light, which is produced when radiation scatters off of elongated dust grains aligned by magnetic fields. The Submillimeter Array recently probed this source with high spatial resolutions and found evidence for even stronger magnetic fields in places. One of the outstanding issues in star formation is the extent to which magnetic fields inhibit the collapse of material onto stars, and this source seems to offer a particularly useful example.
CfA astronomers Josep Girart and TK Sridharan and their colleagues have used the ALMA submillimeter facility to obtain images with spatial scales as small as 0.03 light years. Their detailed polarization maps show that the magnetic field is well ordered all across the clump, which itself is actually fifteen smaller fragments, one of which (at 312 solar masses) appears to be the most massive fragment known.
The scientists analyze the magnetic field strengths and show that, even in the least massive fragment the field is not strong enough to inhibit gravitational collapse. In fact, they find indications that gravity, as it pulls material inward, drags the magneticfield lines along. They are, however, unable to rule out possible further fragmentation. The research is the most precise study of magnetic fields in star forming massive clumps yet undertaken, and provides a new reference point for theoretical models.


The star forming molecular clump W43-MM1 is very massive and dense, containing about 2100 solar masses of material in a region only one-third of a light year across (for comparison, the nearest star to the Sun is a bit over four light years away).
Previous observations of this clump found evidence for infalling motions (signaling that material is still accumulating onto a new star) and weak magnetic fields. These fields are detected by looking for polarized , which is produced when radiation scatters off of elongated dust grains aligned by magnetic fields. The Submillimeter Array recently probed this source with high spatial resolutions and found evidence for even stronger magnetic fields in places. One of the outstanding issues in star formation is the extent to which magnetic fields inhibit the collapse of material onto , and this source seems to offer a particularly useful example.
CfA astronomers Josep Girart and TK Sridharan and their colleagues have used the ALMA submillimeter facility to obtain images with spatial scales as small as 0.03 light years. Their detailed polarization maps show that the magnetic field is well ordered all across the clump, which itself is actually fifteen smaller fragments, one of which (at 312 ) appears to be the most massive fragment known.
The scientists analyze the magnetic field strengths and show that, even in the least massive fragment the field is not strong enough to inhibit gravitational collapse. In fact, they find indications that gravity, as it pulls material inward, drags the lines along. They are, however, unable to rule out possible further fragmentation. The research is the most precise study of magnetic fields in star forming massive clumps yet undertaken, and provides a new reference point for theoretical models.


Read more at: http://phys.org/news/2016-07-role-magnetic-fields-star-formation.html#jCp


Earth's mantle,driving role in plate tectonics


Deep down below us is a tug of war moving at less than the speed of growing fingernails. Keeping your balance is not a concern, but how the movement happens has been debated among geologists.
New findings from under the Pacific Northwest Coast by University of Oregon and University of Washington scientists now suggest a solution to a mystery that surfaced when the theory of plate tectonics arose: Do the plates move the mantle, or does the mantle move the plates.
The separation of tectonic plates, the researchers proposed in a paper online ahead of print in the journal Nature Geoscience, is not simply dictating the flow of the gooey, lubricating molten material of the mantle. The mantle, they argue, is actually fighting back, flowing in a manner that drives a reorientation of the direction of the plates.
The new idea is based on seismic imaging of the Endeavor segment of the Juan de Fuca Plate in the Pacific Ocean off Washington and on data from previous research on similar ridges in the mid-Pacific and mid-Atlantic oceans.
"Comparing seismic measurements of the present mantle flow direction to the recent movements of tectonic plates, we find that the mantle is flowing in a direction that is ahead of recent changes in plate motion," said UO doctoral student Brandon P. VanderBeek, the paper's lead author. "This contradicts the traditional view that plates move the mantle."
While the new conclusion is based on a fraction of such sites under the world's oceans, a consistent pattern was present, VanderBeek said. At the three sites, the mantle's flow is rotated clockwise or counterclockwise rather than in the directions of the separating plates. The mantle's flow, the researchers concluded, may be responsible for past and possibly current changes in plate motion.
The research—funded through National Science Foundation grants to the two institutions - also explored how the supply of magma varies under mid-ocean ridge volcanoes. The researchers conducted a seismic experiment to see how seismic waves moved through the shallow mantle below the Endeavor segment.
They found that the middle of the volcanic segment, where the seafloor is shallowest and the inferred volcanic activity greatest, the underlying mantle magma reservoir is relatively small. The ends, however, are much deeper with larger volumes of mantle magma pooling below them because there are no easy routes for it to travel through the material above it.
Traditional thinking had said there would be less magma under the deep ends of such segments, known as discontinuities.
"We found the opposite," VanderBeek said. "The biggest volumes of magma that we believe we have found are located beneath the deepest portions of the ridges, at the segment ends. Under the shallow centers, there is much less melt, about half as much, at this particular ridge that we investigated.
"Our idea is that the ultimate control on where you have magma beneath these mountain ranges is where you can and cannot take it out," he said. "At the ends, we think, the plate rips apart much more diffusely, so you are not creating pathways for magma to move, build mountains and allow for an eruption."





Patch delivers drug, gene, and light-based therapy to tumor sites





Approximately one in 20 people will develop colorectal cancer in their lifetime, making it the third-most prevalent form of the disease in the U.S. In Europe, it is the second-most common form of cancer.
The most widely used first line of treatment is surgery, but this can result in incomplete removal of the tumor. Cancer cells can be left behind, potentially leading to recurrence and increased risk of metastasis. Indeed, while many patients remain cancer-free for months or even years after surgery, tumors are known to recur in up to 50 percent of cases.
Conventional therapies used to prevent tumors recurring after surgery do not sufficiently differentiate between healthy and cancerous cells, leading to serious side effects.
In a paper published today in the journal Nature Materials, researchers at MIT describe an adhesive patch that can stick to the tumor site, either before or after surgery, to deliver a triple-combination of drug, gene, and photo (light-based) therapy.
Releasing this triple combination therapy locally, at the tumor site, may increase the efficacy of the treatment, according to Natalie Artzi, a research scientist at MIT's Institute for Medical Engineering and Science (IMES) and an assistant professor of medicine at Brigham and Women's Hospital, who led the research.
The general approach to cancer treatment today is the use of systemic, or whole-body, therapies such as chemotherapy drugs. But the lack of specificity of anticancer drugs means they produce undesired side effects when systemically administered.
What's more, only a small portion of the drug reaches the tumor site itself, meaning the primary tumor is not treated as effectively as it should be.
Indeed, recent research in mice has found that only 0.7 percent of nanoparticles administered systemically actually found their way to the target tumor.
"This means that we are treating both the source of the cancer—the tumor—and the metastases resulting from that source, in a suboptimal manner," Artzi says. "That is what prompted us to think a little bit differently, to look at how we can leverage advancements in materials science, and in particular nanotechnology, to treat the primary tumor in a local and sustained manner."
The researchers have developed a triple-therapy hydrogel patch, which can be used to treat tumors locally. This is particularly effective as it can treat not only the tumor itself but any cells left at the site after surgery, preventing the cancer from recurring or metastasizing in the future.
Firstly, the patch contains gold nanorods, which heat up when near-infrared radiation is applied to the local area. This is used to thermally ablate, or destroy, the tumor.
These nanorods are also equipped with a chemotherapy drug, which is released when they are heated, to target the tumor and its surrounding cells.
Finally, gold nanospheres that do not heat up in response to the near-infrared radiation are used to deliver RNA, or gene therapy to the site, in order to silence an important oncogene in colorectal cancer. Oncogenes are genes that can cause healthy cells to transform into tumor cells.
The researchers envision that a clinician could remove the tumor, and then apply the patch to the inner surface of the colon, to ensure that no cells that are likely to cause cancer recurrence remain at the site. As the patch degrades, it will gradually release the various therapies.
The patch can also serve as a neoadjuvant, a therapy designed to shrink tumors prior to their resection, Artzi says.
When the researchers tested the treatment in mice, they found that in 40 percent of cases where the patch was not applied after tumor removal, the cancer returned.
But when the patch was applied after surgery, the treatment resulted in complete remission.
Indeed, even when the tumor was not removed, the triple-combination therapy alone was enough to destroy it.
Unlike existing colorectal cancer surgery, this treatment can also be applied in a minimally invasive manner. In the next phase of their work, the researchers hope to move to experiments in larger models, in order to use colonoscopy equipment not only for cancer diagnosis but also to inject the patch to the site of a tumor, when detected.
"This administration modality would enable, at least in early-stage cancer patients, the avoidance of open field surgery and colon resection," Artzi says. "Local application of the triple therapy could thus improve patients' quality of life and therapeutic outcome."



Translate

Ads