Pokemon go cheat, play smart

It's oftentimes human nature that if rules exist, we'll find a way around them. The worldwide sensation that is Pokémon Go seems to be no exception to that. Players everywhere are finding unique ways to bend, or flat-out break, the game's rules. Some of these methods are fairly harmless, while others can earn you a ban. Want to know more? Of course you do, or you wouldn't be here. Watch our video above or keep on reading below to find out how to cheat in Pokémon Go—but don't say we didn't warn you.

Are you too tired or lazy to walk around and hatch those eggs you've had forever? No problem—just use something else to do it for you! Creative Pokémon Go players have come up with all sorts of ways to hatch their eggs without lifting a finger. Some trainers have even started strapping their phones to their dogs before sending them outside to play in the yard. Others use spinning household objects to do the work for them: Record player turntables, bicycle wheels, and even ceiling fans will work for this method. Secure your phone to a ceiling fan blade, or lay it on the turntable of a record player. Turn it on, and simply wait for the kilometers to rack up. We tested this method ourselves, and while it does work, it takes a very long time for you to reach the 2km, 5km and 10km distances needed for a hatch. You'd honestly be better off just keeping the app running while you move around your office or home carrying out your normal day—you might be surprised how far you walk!

Also, we probably shouldn't have to tell you this, but don't use your microwave for this method. Despite the memes going around which show a phone safely spinning inside a microwave, if you do this, all you'll end up with is fried eggs (and a fried phone).

The easy gym-claiming hack

This hack has generated a lot of angry comments from trainers on Reddit and in social media. When a player attacks a Gym and brings its prestige down to zero, the Gym will become neutral until a player places a new Pokémon into it as a defender. Generally, it will take the trainer who defeated the Gym a few moments to slot their Pokémon in as a defender, because you can only place creatures there who are fully healed.

If you don't have creatures that are strong enough to take over a Gym yet, but you still want to get the defense reward for owning a Gym, those few seconds are your opportunity. While the other trainer is busy reviving and healing their Pokémon, watch for the Gym to turn neutral, then immediately tap on it and place one of your Pokémon in there as a defender. Next, go to your Shop menu and tap the shield icon to claim your daily defender bonus award of Pokécoins and stardust. You'll claim a Gym for your team and earn some currency to use in the Shop, without having to attack even once.
 Get the Eevee you want 
While more of an Easter egg than a cheat, this is still an effective trick to use in the game. If you want to control the final form your Eevee will evolve into, name them after the original Eevee trainers from the Pokémon anime series! Naming your Eevee "Sparky" will net you a Jolteon upon evolution. Naming him "Rainer" will get you a Vaporeon, while naming him "Pyro" will result in a Flareon. Make sure you restart your app after naming your Eevee, to ensure the new name went through correctly before proceeding with the evolution process. This method is guaranteed to work for at least one of each "Eeveelution" type. Personally, we've had it continue to work for every Eevee we've tried it on, as long as you remember to change the name of the previous "Sparky/Pyro/Rainer" before giving another Eevee that same name.
GPS spoofing
Finally, we've come to the big bad cheat that's being used in Pokémon Go. Put simply, GPS spoofing is making your device pretend to be at a location that you are not. Some trainers have gone to some extreme lengths to do this, like strapping their phone to a remote-controlled drone and flying it around while playing the game via their laptop at home.

Others have used the somewhat-easier method of faking their location via a virtual Android device on their PC. While we won't go into details (you can Google for them if you absolutely must know), here's the basic premise: Players install the Bluestacks program on their computer, which creates a virtual Android environment on your PC that acts just like the real thing. After rooting the device to give them more control over the system settings, they install a modified APK file of Pokémon Go, as well as a GPS faking app. Once everything is set up, cheaters can set their "location" via the fake GPS app on the device, open up Pokémon Go, and then catch creatures or collect items at Pokéstops without leaving their home.

Obviously, this method of cheating is not only against the spirit of the game, but it's also against Niantic's TOS. As with their other augmented-reality game, Ingress, Niantic can and will ban players that they catch spoofing their GPS. Early reports indicate that cheaters are only being given a soft ban thus far—locking them out of the game for an hour or two at the most. As the developers get a handle on the massive popularity of the game, and can turn their attention to GPS spoofers, it will only be a matter of time before the permanent bans begin to fly.

Read More: http://www.looper.com/19485/creative-ways-people-cheating-pokemon-go/?utm_campaign=clip

PlayStation Vita Exploit Reverse Engineering Challenge

 

HENkaku KOTH Challenge

We released HENkaku a week ago and were blown away by the reception. There has been over 25k unique installs and every day new homebrew are being announced. This is all thanks to those who contributed to the SDK project back when Rejuvenate was announced. Without a working toolchain for developers and a couple of working homebrews at the time of HENkaku’s launch, I doubt the reception would have been as popular.
Since the release, there have been a couple of questions we’ve been getting over and over again: When will this work on older firmware versions? How does HENkaku work? Where is the source code? I am going to address these questions in a bit. First, I want to thank Sony. It is common for hackers to laugh and poke fun at companies on the receiving end of hacks. But I think that’s unfair–security issues are a learning experience for all sides and we should all be thankful for it. For myself, I started my work on the Vita since its North America release in 2012. Although Davee beat me in hacking the PSP compatibility mode and getting ROP on WebKit, I was the first to run native code and dump the memory through PSM. Since then, Davee, Proxima, I, and later xyz (collectively “molecule”) have been working on the Vita on and off through the years. It is a tremendous learning experience both working with these smart individuals and getting my hands dirty with real world hacks. I think I owe a large portion of what I know about security due to my work on the Vita. It has, hands down, the most well designed security infrastructure of any consumer electronics device. In 2012, the iPhone, Android, and 3DS were no match. Even today, I think the Vita rivals the security of devices in the market.
There’s no single reason that led me to this conclusion, but there’s a couple of factors. First, the Vita has really good security-in-depth: multiple layers of abstraction, exploit mitigation, proper input sanitation, etc. Second, the software and firmware are mostly proprietary. Now that’s interesting because usually this is usually a point against security: trust the audited code of the open source community because rolling your own features will expose you to more bugs. However, in their case, this worked in Sony’s favor. They managed to not make any major security mistakes (I hypothesize that they hired an external security firm to audit their code) and this made it harder for us to put a foot in the door (because we have nothing to go on). While known WebKit exploits provide a common way into a new device, the Vita is unlike the PS4 where we can exploit known FreeBSD9 bugs on an older firmware to get higher privileges. The calculated risk they took in using proprietary code paid off since nobody has been able to decrypt their firmware files yet–and until someone does, it is unlikely that anyone would write any advanced exploit code. However, the risk is that if their code is indeed buggy, then once the floodgates open (someone finds a single exploit), there is no closing it (all the bugs will be found). Finally, the Vita is not exposed to hardware attacks simply because it would be too expensive to perform. Unlike the 3DS, the Vita’s RAM is on the same chip as the CPU so we cannot dump the contents through external hardware without access to a sophisticated lab and experienced technicians. That means as long as someone doesn’t dump the memory, because of the exploit mitigation features, it would be extremely difficult to find vulnerabilities and exploit them. However, it is very difficult to dump the memory because we do not have the funds to do it with hardware and must resort to exploiting the software. But then we have a chicken-and-egg problem.
All this is to say that we of team molecule wish to share our learning experience with the rest of you. We feel that the Vita has been neglected by hackers because of it’s unpopularity. However, they are missing out on a great challenge. The barrier of entry has been lowered since you can buy a PS TV for less than $50 USD. Don’t take my word for it, take a stab at it yourself and see if the device is really secure or if I’m just too inexperienced.

KOTH Challenge

CTF challenges are common in the hacking community. The goal is to hack a system in a controlled environment to get a “flag” and is a fun and educational experience. I highly recommend it to anyone interested in security. We are hosting a variation of this challenge. The first king-of-the-hill challenge will take place on Vita Island.
The idea is as follows: we (molecule) are currently the kings of the hill. You (challenger) can claim the throne by reversing our hack (HENkaku) and explaining it. Once we have been knocked off, we will post all our source code, build scripts, and a special bonus… We won’t say what it is yet, but it can be claimed by anyone who beats the challenge (not just the first) and is only valuable to people who have an interest in the Vita and Vita hacking. Since all the “prizes” are available to everyone and not just the first, we strongly encourage collaboration.
To make the challenge as interesting as possible, we used minimal obfuscation in our code. The goal isn’t to see who can write the best deobfuscation tool but to invite all the skilled security researchers of the world to look at what we believe is one of the most secure device on the market today. Therefore most of the difficulties in the challenge will be posed by the system and not us.

Releases

The source for HENkaku will be released in parts. Today, we released the files for offline hosting. This allows the challengers to start in reversing our code and also allows for anyone to mirror HENkaku. It also allows those with slow or intermittent internet access to use HENkaku.
Next, when someone completely reverses the second stage ROP and explains properly how it works, we will release the source code up to that point as it might aid in the next part. I don’t think it would take more than a couple of weeks for someone to get to this point. Some questions to be thinking about are: how do we manage to run unsigned code? do we get kernel access? if so, how? if not, what other ways are there?
Finally, when someone figures out the entire HENkaku installation process, we will release all our source and tools. I hope this would be done in no longer than a couple of months (if interest takes off) however it may take a year (if there is minimal interest). I’m not going to hold the HENkaku sources for hostage, so if there is no interest for a long time, I’ll reevaluate the options.
Until then, molecule will be taking a break from hacking for an indeterminate amount of time. We will still maintain HENkaku and post fixes from time to time. However, we will not be actively working so we won’t be able to port HENkaku to lower firmware versions. For me this is because the amount of free time I have is slowly diminishing and I have other things to do. I hope I have inspired others to take up on hacking the Vita so molecule won’t be the only people to hack it. My hope is that in a year, HENkaku would no longer be needed and molecule can quietly retire.

Scientists discover new form of light


New research suggests that it is possible to create a new form of light by binding light to a single electron, combining the properties of both.
According to the scientists behind the study, from Imperial College London, the coupled light and electron would have properties that could lead to circuits that work with packages of light - photons - instead of electrons.
It would also allow researchers to study quantum physical phenomena, which govern particles smaller than atoms, on a visible scale.
In normal materials, light interacts with a whole host of electrons present on the surface and within the material. But by using theoretical physics to model the behaviour of light and a recently-discovered class of materials known as topological insulators, Imperial researchers have found that it could interact with just one electron on the surface.
This would create a coupling that merges some of the properties of the light and the electron. 
Normally, light travels in a straight line, but when bound to the electron it would instead follow its path, tracing the surface of the material.
In the study, published today in Nature Communications, Dr Vincenzo Giannini and colleagues modelled this interaction around a nanoparticle - a small sphere below 0.00000001 metres in diameter - made of a topological insulator.
Their models showed that as well as the light taking the property of the electron and circulating the particle, the electron would also take on some of the properties of the light.
Normally, as electrons are travelling along materials, such as electrical circuits, they will stop when faced with a defect. However, Dr Giannini's team discovered that even if there were imperfections in the surface of the nanoparticle, the electron would still be able to travel onwards with the aid of the light.
If this could be adapted into photonic circuits, they would be more robust and less vulnerable to disruption and physical imperfections.
Dr Giannini said: "The results of this research will have a huge impact on the way we conceive light. Topological insulators were only discovered in the last decade, but are already providing us with new phenomena to study and new ways to explore important concepts in physics."
Dr Giannini added that it should be possible to observe the phenomena he has modelled in experiments using current technology, and the team is working with experimental physicists to make this a reality.
He believes that the process that leads to the creation of this new form of light could be scaled up so that the phenomena could observed much more easily. Currently, quantum phenomena can only be seen when looking at very small objects or objects that have been super-cooled, but this could allow scientists to study these kinds of behaviour at room temperature.


new' material found to exist in nature in rare minerals from Siberia

One of the hottest new materials is a class of porous solids known as metal-organic frameworks, or MOFs. These man-made materials were introduced in the 1990s, and researchers around the world are working on ways to use them as molecular sponges for applications such as hydrogen storage, carbon sequestration, or photovoltaics.


Now, a surprising discovery by scientists in Canada and Russia reveals that MOFs also exist in nature—albeit in the form of rare minerals found so far only in Siberian coal mines.
The finding, published in the journal Science Advances, "completely changes the normal view of these highly popular materials as solely artificial, 'designer' solids," says senior author Tomislav Friščić, an associate professor of chemistry at McGill University in Montreal. "This raises the possibility that there might be other, more abundant, MOF minerals out there."
The twisting path to the discovery began six years ago, when Friščić came across a mention of the minerals stepanovite and zhemchuzhnikovite in a Canadian mineralogy journal. The crystal structure of the minerals, found in Russia between the 1940s and 1960s, hadn't been fully determined. But the Russian mineralogists who discovered them had analyzed their chemical composition and the basic parameters of their structures, using a technique known as X-ray powder diffraction. To Friščić, those parameters hinted that the minerals could be structurally similar to a type of man-made MOF.
His curiosity piqued, Friščić began looking for samples of the rare minerals, reaching out to experts, museums and vendors in Russia and elsewhere. After a promising lead with a mining museum in Saint Petersburg failed to pan out, Igor Huskić, a graduate student in the Friščić research group at McGill turned his attention to synthesizing analogues of the minerals in the lab - and succeeded. But a major journal last year declined to publish the team's work, in part because the original description of the minerals had been reported in a somewhat obscure Russian mineralogical journal.
Then, the McGill chemists caught a break: with the help of a crystallographer colleague in Venezuela, they connected with two prominent Russian mineralogists: Sergey Krivovichev, a professor at Saint Petersburg State University, and Prof. Igor Pekov of Lomonosov Moscow State University.
Krivovichev and Pekov were able to obtain the original samples of the two rare minerals, which had been found decades earlier in a coal mine deep beneath the Siberian permafrost. The Russian experts were also able to determine the crystal structures of the minerals. These findings confirmed the McGill researchers' initial results
Stepanovite and zhemchuzhnikovite have the elaborate, honeycomb-like structure of MOFs, characterized at the molecular level by large voids. The two minerals aren't, however, representative of the hottest varieties of MOFs—those that are being developed for use in hydrogen-fueled cars or to capture waste carbon dioxide.

As a result, Friščić and his collaborators are now broadening their research to determine if other, more abundant minerals have porous structures that could make them suitable for uses such as hydrogen storage or even drug delivery.
In any event, the discovery of MOF structures in the two rare minerals already is "paradigm-changing" Friščić says. If scientists had been able to determine those structures in the 1960s, he notes, the development of MOF materials "might have been accelerated by 30 years."


X-Ray microscopy technique reveals nanoscale information on rechargeable batteries




Better batteries that charge quickly and last a long time are a brass ring for engineers. But despite decades of research and innovation, a fundamental understanding of exactly how batteries work at the smallest of scales has remained elusive.
In a paper published this week in the journal Science, a team led by William Chueh, an assistant professor of materials science and engineering at Stanford and a faculty scientist at the Department of Energy's SLAC National Accelerator Laboratory, has devised a way to peer as never before into the electrochemical reaction that fuels the most common rechargeable cell in use today: the lithium-ion battery.
By visualizing the fundamental building blocks of batteries - small particles typically measuring less than 1/100th of a human hair in size - the team members have illuminated a process that is far more complex than once thought. Both the method they developed to observe the battery in real time and their improved understanding of the electrochemistry could have far-reaching implications for battery design, management and beyond.
"It gives us fundamental insights into how batteries work," said Jongwoo Lim, a co-lead author of the paper and post-doctoral researcher at the Stanford Institute for Materials & Energy Sciences at SLAC. "Previously, most studies investigated the average behavior of the whole battery. Now, we can see and understand how individual battery particles charge and discharge."
The heart of a battery
At the heart of every lithium-ion battery is a simple chemical reaction in which positively charged lithium ions nestle in the lattice-like structure of a crystal electrode as the battery is discharging, receiving negatively charged electrons in the process. In reversing the reaction by removing electrons, the ions are freed and the battery is charged.
These basic processes - known as lithiation (discharge) and delithiation (charge) - are hampered by an electrochemical Achilles heel. Rarely do the ions insert uniformly across the surface of the particles. Instead, certain areas take on more ions, and others fewer. These inconsistencies eventually lead to mechanical stress as areas of the crystal lattice become overburdened with ions and develop tiny fractures, sapping battery

"Lithiation and delithiation should be homogenous and uniform," said Yiyang Li, a doctoral candidate in Chueh's lab and co-lead author of the paper. "In reality, however, they're very non-uniform. In our better understanding of the process, this paper lays out a path toward suppressing the phenomenon."

For researchers hoping to improve batteries, like Chueh and his team, counteracting these detrimental forces could lead to batteries that charge faster and more fully, lasting much longer than today's models.
This study visualizes the charge/discharge reaction in real-time - something scientists refer to as operando - at fine detail and scale. The team utilized brilliant X-rays and cutting-edge microscopes at Lawrence Berkeley National Laboratory's Advanced Light Source.
"The phenomenon revealed by this technique, I thought would never be visualized in my lifetime. It's quite game-changing in the battery field," said Martin Bazant, a professor of chemical engineering and of mathematics at MIT who led the theoretical aspect of the study.
Chueh and his team fashioned a transparent battery using the same active materials as ones found in smartphones and electric vehicles. It was designed and fabricated in collaboration with Hummingbird Scientific. It consists of two very thin, transparent silicon nitride "windows." The battery electrode, made of a single layer of lithium iron phosphate nanoparticles, sits on the membrane inside the gap between the two windows. A salty fluid, known as an electrolyte, flows in the gap to deliver the lithium ions to the nanoparticles.
"This was a very, very small battery, holding ten billion times less charge than a smartphone battery," Chueh said. "But it allows us a clear view of what's happening at the nanoscale."
Significant advances
In their study, the researchers discovered that the charging process (delithiation) is significantly less uniform than discharge (lithiation). Intriguingly, the researchers also found that faster charging improves uniformity, which could lead to new and better battery designs and power management strategies.
"The improved uniformity lowers the damaging mechanical stress on the electrodes and improves battery cyclability," Chueh said. "Beyond batteries, this work could have far-reaching impact on many other electrochemical materials." He pointed to catalysts, memory devices, and so-called smart glass, which transitions from translucent to transparent when electrically charged.
In addition to the scientific knowledge gained, the other significant advancement from the study is the X-ray microscopy technique itself, which was developed in collaboration with Berkeley Lab Advanced Light Source scientists Young-sang Yu, David Shapiro, and Tolek Tyliszczak. The microscope, which is housed at the Advanced Light Source, could affect energy research across the board by revealing never-before-seen dynamics at the nanoscale.
"What we've learned here is not just how to make a better battery, but offers us a profound new window on the science of electrochemical reactions at the nanoscale," Bazant said.


Translate

Ads